An Obata-type Theorem on a Three-dimensional Cr Manifold

نویسنده

  • S. IVANOV
چکیده

We prove a CR version of the Obata’s result for the first eigenvalue of the sub-Laplacian in the setting of a compact strictly pseudoconvex pseudohermitian three dimensional manifold with non-negative CR-Paneitz operator which satisfies a Lichnerowicz type condition. We show that if the first positive eigenvalue of the sub-Laplacian takes the smallest possible value then, up to a homothety of the pseudohermitian structure, the manifold is the standard Sasakian three dimensional unit sphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Obata-type Theorem in Cr Geometry

We discuss a sharp lower bound for the first positive eigenvalue of the sublaplacian on a closed, strictly pseudoconvex pseudohermitian manifold of dimension 2m + 1 ≥ 5. We prove that the equality holds iff the manifold is equivalent to the CR sphere up to a scaling. For this purpose, we establish an Obata-type theorem in CR geometry which characterizes the CR sphere in terms of a nonzero funct...

متن کامل

An Obata Type Result for the First Eigenvalue of the Sub-laplacian on a Cr Manifold with a Divergence-free Torsion

We prove a CR version of the Obata’s result for the first eigenvalue of the sub-Laplacian in the setting of a compact strictly pseudoconvex pseudohermitian manifold which satisfies a Lichnerowicz type condition and has a divergence free pseudohermitian torsion. We show that if the first positive eigenvalue of the sub-Laplacian takes the smallest possible value then, up to a homothety of the pse...

متن کامل

On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons

The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

Fractional dynamical systems: A fresh view on the local qualitative theorems

The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013